Improving the Performance of Recommender Systems That Use Critiquing
نویسندگان
چکیده
Personalization actions that tailor the Web experience to a particular user are an integral component of recommender systems. Here, product knowledge either hand-coded or “mined” is used to guide users through the often overwhelming task of locating products they will like. Providing such intelligent user assistance and performing tasks on the user’s behalf requires an understanding of their goals and preferences. As such, user feedback plays a critical role in the sense that it helps steer the search towards a “good” recommendation. Ideally, the system should be capable of effectively interpreting the feedback the user provides, and subsequently responding by presenting them with a “better” set of recommendations. In this paper we investigate a form of feedback known as critiquing. Although a large number of recommenders are well suited to this form of feedback, we argue that on its own it can lead to inefficient recommendation dialogs. As a solution we propose a novel recommendation technique that has the ability to dramatically improve the utility of critiquing.
منابع مشابه
Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملImproving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملCollaborative Compound Critiquing
Critiquing-based recommender systems offer users a conversational paradigm to provide their feedback, named critiques, during the process of viewing the current recommendation. In this way, the system is able to learn and adapt to the users’ preferences more precisely so that better recommendation could be returned in the subsequent iteration. Moreover, recent works on experience-based critiqui...
متن کامل